Technology Portfolio

Hybrid Halide Perovskite Field-Effect Transistor

The Hybrid Halide Perovskite Field-Effect Transistor is the first fabricated field-effect transistor based on organic/inorganic hybrid perovskites, with key advantages over traditional approaches including increased compatibility, better scalability and ultra-low cost.

Technology Overview

Reference #:15-64

Organic-inorganic perovskites combine the low-cost processing and versatility of organic materials with the performance of inorganic compounds.

Scientists at Wake Forest University have developed the first working field-effect transistors based on hybrid halide perovskites, enabling the direct measurement of charge carrier transport and electrical properties at room temperature in this class of materials. The device, fabricated in collaboration with researchers at the University of Utah, is designed with gold source and drain contacts modified with self-assembled monolayers, a Cytop gate dielectric and an aluminum gate electrode.

The unique field-effect transistors structure produces balanced electron and hole-transport with mobility measuring ~1 cm2/Vs. Processing temperatures lower than 105 °C ensure compatibility with various flexible plastic substrates and rapid, large-area deposition methods such as inkjet printing and spray deposition. Ongoing research efforts currently focus on structural field-effect transistor device modifications to further improve performance efficiencies.

Field-effect transistors are used extensively in electronics, especially in integrated circuits, which require compact and low cost components.

Inorganic (silicon) field-effect transistors are ill suited for the emerging class of large-area, ultra-low cost, flexible electronic products such as flexible displays and electronic textiles due to their mechanical properties and relatively high cost.

Organic field-effect transistors show promise for use in modern electronics because of their low manufacturing cost. However, few organic devices have transferred from the research environment to be utilized in manufacture because of their insufficient performance.

A functioning prototype field-effect transistor based on hybrid halide perovskites has been designed, fabricated and measured. Current development aims to improve carrier mobility and on/off sub threshold slope.

  • Oana D. Jurchescu, PhD, Physics
  • Yaochuan (Josh) Mei, Physics
  • Zeev V. Vardeny, PhD, The University of Utah
  • Chuang Zhang, PhD, The University of Utah

Start a Conversation

John Druga
John Druga, MS, MBA
Licensing Director, Technology Commercialization